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Abstract. We solve the spectrum of the closed Temperley—Lieb quantum spin chains using the
coordinate Bethe ansatz. These models are invariant under the quantumigiel(2)].

1. Introduction

Quantum groups, together with the Temperley—Lieb algebra, play a important role in the
study of integrable spin chains. It may be interesting to study particular Hamiltonians
associated with the Temperley—Lieb which are invariant to the quantum group. Taking into
account the usual toroidal boundary conditions, the Hamiltonians take the form

N-1
H= Z Un,n+1 + Un1. (1)

n=1
where U, ,+1 operates in a direct product of twos(2 1)-dimensional complex spaces
v#+1 at positionsn andn + 1. They are not invariant with respect t,[s/(2)] since
Uy1 # Uiy breaks translational invariance, reflecting the non-cocommutativity of the co-
product. Indeed, we know from [1-3] that very special boundary terms must be considered
when we seek these quantum group invariant spin chains. In particular, one possibility to
obtain a quantum group invariant Hamiltonian is to consider open boundary conditions,
i.e. Uyy = 0. for the XXZ Hamiltonian with open boundary conditions one has to
apply the Bethe ansatz techniques introduced by Sklyanin [4] using Cherednik’s reflection
matrices [5, 6]. TheXXZ Heisenberg model [7]spl, (2, 1) invariant supersymmetric-J
model [8, 9],U,[sl(n)] invariant generalization of th& XZ chain [10] andSU, (n|m) spin
chains [3, 11] have been solved for open boundary conditions by this method.

Recently, by means of a generalized algebraic nested Bethe ansatz, Karowski and
Zapletal [12] presented a class of quantum group invariastate vertex models with
periodic boundary conditions. Also an extension of this method to the case of graded
vertex models was analyzed in [13], wheresd, (2|1) invariant SUSYr—J model with
boundary conditions was presented.

In fact, this type of models were first discussed by Martin [14] from the representations
of the Hecke algebra. The study of closed quantum group invariant closed spin chains
in the framework of the coordinate Bethe ansatz was presented by Gebsddor the
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SU,(2) case [15]. In this context it would be interesting to discuss other quantum group
invariant closed spin chains. Therefore, it is the purpose of this paper to present and
solve, via coordinate Bethe ansatz [16] a closed sgitamiltonian, which in terms of the
Temperley—Lieb operators can be written as

N-1
H= U, +U (2
n=1
where
Up=GUy_1G™* G=(Q—-U)(Q-Up) - (Q—Uy_1) (3)

satisfying [, G] = 0 and additionally invariance with respect to the quantum algebra. The
operatorG shifts theU, by one unitGU,G ! = U,,1 and map$/, onto U;, which manifest
the translational invariance 6.

2. The Temperley-Lieb Hamiltonians

In the basis whereS? is diagonal with eigenvectory, n), |s — 1, n),...,| —s,n) and
eigenvalues, s — 1, ..., —s, the Hamiltonian densities acting on two neighbouring sites
are given by

(k.11 U i, j) = €()e(k)g ™840 S0 ik l=s5s—-1...,—s+1—s (4

where e(i) = (—1)! for s integer ande(i) = (—1)'tY/2 for s semi-integer. ThugJ,
denotes the projection on states whose restriction to sitsd» + 1 has total spin zero.
These Hamiltonians were derived Batchelor and Kuniba [17] from representations of the
Temperley-Lieb algebras associated with the quantum gigUp/(2)]. The cases = %
was investigated in [15].

In fact, U,, obeys the Temperley—Lieb algebra [18]

UZ=(Q+Q0 MU, Q0+0 '=[2s+1],
UnUIH-lUn =U, [Una Ul] =0 for |}’l - ll Z 2

and commutes with the quantum grodf[s/(2)]. The g-number notation isx], =
(¢ — ¢ /(g — ¢~ Y. This algebra appears in a large class of solvable models and is
known to essentially govern their physical propertigtis an element of a set of infinity
guantities conserved which are involutive provided @iasatisfies the defining relations (5).
Having now built common ground for all closed Hamiltonian densities, whose salient
feature is that they are spin-zero projectors, we may implement the steps of [19], where the
spectrum of theA—D Temperley—Lieb Hamiltonians with either periodic or free boundary
conditions were solved, via a generalization of the coordinate Bethe ansatz.

®)

3. The coordinate Bethe ansatz

Since these Hamiltonians commute with the total sfjn= Y""_, 5%, the eigenvalues of
the operator = sN — S% can be used to collect the eigenstates#in sectors,W,. Due
to this U (1) invariance, there always exists a reference sfatesatisfyingHWo = EqWo,
with Eg = 0. We takeW, to be Wy =[], Is,n). This is the only eigenstate in the sector
r = 0. All other energies will be measured relative to this state.
We will now start to diagonalizé{ in every sector. Nothing interesting happens in
sectors withr < 2s. SinceH is a sum of projectors on spin zero, these states are annihilated

by H.
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The first non-trivial sector = 25, the correspondent eigenspace is spanned by the states

n(=j. ) =|s 55 —jj s--~s>
wheren =1,2,...,N—1andj = —s, —s+1, ..., s. We seek eigenstates &f which are
linear combinations of these vectors. It is very convenient to consider the linear combination
Q) =Y (=D " In(—j, ). (6)
j==s
which is a highest-weight stats;" |©2(n)) = 0, and eigenstate df,:
U, 12m) = (Q+ 0 HIQm) Uns11€2(n)) = € |2(n £ 1)) @
U, |1Q(n £1) = ¢, |Q(n)) U, |Q(m)) =0 for n £ {m+1 m}
wheree; = —1 for semi-integers and ¢, = 1 for integers. In this basis, all spin-

HamiltoniansH can be treated in a similar way and it affords a considerable simplification
in the diagonalization of{, when one compares with the computations in the usual spin
basis [19].

3.1. One-pseudoparticle eigenstates
Let us consider one free pseudoparticle as a highest-weight state which lies in the sector
r=2s:
N-1
Wp = Y A Q). ®)
n=1

Using the eigenvalue equatidiv,, = E», Wy, One can derive a complete set of equations
for the wavefunctionsA (n).

The action of the operatat = (Q — Uz) --- (Q — Uy_1) On the state$Q (n)) can be
computed using equation (7). It is simple in the bulk and at the left boundary:

G Q) = -0V % |Q(n + 1) 1<n<N-2 9)
but manifests its non-locality at the right boundary:
N-1
GIQIN —1) =60 2> (=& 0)" IQN —n)). (10)
n=1
Similarly, acting with the operato6 1 = (Q~1 — Uy_1) --- (Q~1 — Uy), we obtain
G QM) = -0V |Q(n — 1) 2<n<N-1 (11)
N-1
G =60 VY (-6, 0)" 1Q(m) (12)
n=1

for the bulk including the right boundary and for the left boundary, respectively.
From these results one can see that the actidef GUy_1G ! vanishes in the bulk:

U |2(n)) =0 2<n<N-2 (13)
and is non-local at the boundaries:
N-1

Up|Q(D) = =& ) (—&,0)" |Q(n) Up|R(N — 1) = (—¢,0) N Up12(D)) .

n=1

(14)
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Next, the action of the operatof = Z,ivz’ll U, on the state$2(n)) gives the following
equations:

UIRD) =(Q+ 0 HIRQD) + € 12(2)
UIRM) =(Q+ 07H QM) +6 R0 — 1) + & Q20+ 1) for 2<n<N -2
UIIN - 1) = (0 + 0 HIQWN — 1) + & QN —2).

(15)

Before we substitute these results in the eigenvalue equation, we will define two new
states

€ 12(0) = U [2(D)) & [Q2(N)) =Up [Q2(N — 1)) (16)

to include the cases = 0 andn = N in the definition ofW,,, equation (8). Finally, the
action of H = U + Uy on the state$Q (n)) is

HIQO) =(Q+ 0 HIROD) + (—,D)Ve |QIN — D) + € [Q(D))
HIQM) = (Q+ 0 HIQM) + 6 1Qn — D) + & |Qn + 1))

for 1<n<N-2 (17)
HIQIN = 1) =(Q+ 0 HIQN — D) + & QN — 2)) + (—6,0) e, [2(0))
HIQN)) = (Q+ 07HIQN) + & QN — D) + (—6,0) Ve, 1Q(D) .

Substituting these results in the eigenvalue equadtdn, = E,; W, and using the boundary
conditions

(—&, QM A(x) = A(N +x) (18)
we obtain a complete set of eigenvalue equations for the wavefunctions:
Ex An) = (0 + Q0 HAMm) + ,A(n — 1) + €,A(n + 1) for 1<n<N-1 (19)

The plane-wave parametrization(n) = £" solves these eigenvalue equations and the
boundary conditions (18), provided that

Ex =0+ 0 +eE+&Y and &V =(—¢0)" (20)

where¢ = €’, 6 being the momentum.

3.2. Two-pseudoparticle eigenstates

Let us now consider the sector = 2(2s), where we have two interacting
pseudoparticles.  We seek the corresponding eigenfunction as products of single
pseudoparticles eigenfunctions, i.e.

Wg = ) Alxs, x2) [Q(x1, x2)) (21)
x1+1l<xp
where
Q1 %) = Y D (=D g® T xa(—i, i), xa(—j, ) - (22)

i=—s j=—s

To solve the eigenvalue equati@GtV,, = E4 W4, We recall (7) to obtain the action of
U andlfy on the state$(x1, x2)). We have to consider four cases.
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(i) When the two pseudoparticles are separated in the bulk, the actignisof
UIQ(x1 x2)) = 2(Q + 07Y [Q2(x1, x2)) + € [Q(x1 — 1, x2)) + € [Q(x1 + 1, x2))

€ Q(x1, x2 — D) + € [2(x1, x2 + 1)) (23)

i.e.forx; >2andx; +3<x, <N -2.
(i) When the two pseudoparticles are separated but one of them or both are at the boundaries

U, x2)) =20+ 0 H QL x2)) + & (2, x2)) + € 1Q(L, x2 — 1))

+€,1Q(1, x2 + 1) (24)
UIRExL N —1D) =20+ 0 HIQx1. N — D) +&|Q(x1 — 1L, N — 1))

Fe Q1+ 1L N —-1) 4+ ¢ |Q(x1, N — 2)) (25)

UIRELN-D) =20+ 0 HIQLN -1) +&IQ2 N —1) +¢I[Q(L N - 2)) (26)

where 2< x1; < N—-4and4< xx < N - 2.
(i) When the two pseudoparticles are neighbours in the bulk

UIRE, x+2) =20+ 0 HIQx, x+2) + 6 |QCx — 1 x+2)) + & |Qx, x + 3))

+ U1 12(x, x + 2)) (27)

for2<x < N —4.
(iv) When the two pseudoparticles are neighbours and at the boundaries

UINDL3) =20+ 0 H QDL 3) +¢ 21 4) + Uz12(L, 3)) (28)
UIKIN -3, N—-1) =20+ 0 H|QN -3, N —1)) +¢ QN — 4 N — 1))
+Uy_2|Q(N —3,N —1)). (29)

Moreover, the action dffy does not depend on the pseudoparticles are neither separated
nor neighbours. It vanishes in the bulk

U |2(x1,x0)) =0 for x1£1 and x;#N -1 (30)
and is non-zero at the boundaries:
Xx2—2

Uo|R(L, x2)) = —€; Y (=& Q! 1Q(k, x2)) — (—€,0)* U, |Q(x2 — 1, x2+ 1))
k=1

N-1
—& Y (—&0) 7 Q(x2, k) (31)
k=x2+2
Up IR(x1, N — 1) = (—6,0) N2 Uy IR (L, x2)) (32)

where 2< x; < N -3 and 3<x, < N - 2.
Before we substitute these expressions in the eigenvalue equation, we define new states
in order to have consistency between bulk and boundaries terms

Uo|2(1, x2)) = & [Q(0, x2)) .  Uol2(x1, N — 1)) = & |Q(x1, N))
U QAN —-1) =€ Q0N —1) +e[Q2(LN)) (33)
U1 1, x +2)) = & [Q(x, x + 1) + & [Q((x + 1, x +2)).
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Acting with H on these new states, we obtain
HIQO,x2)) = 2(Q + QY R(0, x2)) + €& [R(0, x2 — 1)) + € [2(0, x2 + 1))
+6 121, x2) + (—6,0)V %€ 1Q(x2, N — 1)) (34)
HIQx1, N)) =20+ 07N Q1 N)) + 6 Q1 — L N)) + & [Q(x1 4+ 1. N))
+6 1201, N = 1)) + (—6,0) V"2, 12(L, x1)) (35)

HIQ,x+ 1) =(Q+ 0 DI, x+ 1) + 610 —Lx+ 1) +€I[Q0x, x+2).
(36)

Substituting these results in the eigenvalue equation, we obtain the following equations for
wavefunctions corresponding to the separated pseudopatrticles:

EaA(x1, x2) = 200 + Q7 HA(x1, x2) + €,A(x1 — 1, x2) + €, A(x1 + 1, x2)

+eA(xy, x2 — 1) + €,A(xg, x2+ 1) (37)
i.e. forx; > 1 andx; + 3 < x2 < N — 1. The boundary conditions now read

A, N +x1) = (=6, Q)" ?A(x1, x2). (38)
The parametrization for the wavefunctions

A(x1, x2) = A12861°6)" + Anéy 785" (39)
solves equation (37) provided that

Ex =20+ 0 H+eG+E " +6+85D (40)
and the boundary conditions (38) provided that
& = (¢ Q)N‘zﬁ—”, & = (—esQ)N‘z% = V= (-6 0*"? (41)

12 21

where¢ = £, = €@+ 9, 4 6, being the total momenta.
Now we include the new states (33) in the definitiondef, in order to extend (21) to

Wo = D A(x1, X) [Q(x1, X2)) - (42)

X1<X2

Here we have used the same notation for separate and neighbouring states.
Substituting equations (27) and (36) in the eigenvalue equation, we obtain

ExA(x,x+1D) =0+ 0 HAx,x+ 1D +e6Ax —Lx+1) +eA(x,x +2) (43)

which gives us the phase shift produced by the interchange of the two interacting
pseudoparticles

Az 1+E6+6(0+0H%

—— = . (44)
A1 1+&+6(Q+0HE
We thus arrive at the Bethe ansatz equations which fix the valugsarid&,:
N _ (. N2 _1+§+€s(Q+Q1)$2}
2 = (e 0) { 1+&+6(0+ 0 D (45)

£'8) = (6,02
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3.3. General eigenstates

The generalization to any multiple of 2 is in principle straightforward. Since the Yang—
Baxter equations are satisfied, there is only two-pseudoparticle scattering (if \Wenuastgix
language). Therefore the neighbour equations, where more the two pseudoparticles become
neighbours, are not expected to give any new restrictions. For instance, in the sector
r = 3(2s) we have three interacting pseudoparticles with paramétes and £&3. The
corresponding wavefunctions

A(x1, X2, X3) = A1y 6,265° + A1, 6,°637 + Ap1gE 265 65° + Ao 2E,°Ey"

+ Ag1251°8,183° + Az 6, 7ES" (46)
satisfy the boundary conditions
A(xz, x3, N +x1) = (=6, Q)" *A(x1, x2, x3)
which imply that
Ajj Aigj .,
& = (e, 0V = (e, 0N i#j#k=123  (47)
A Agji
These relations show us that the interchange of two pseudoparticles is independent of
the position of the third particle. Thus in the secioe= p(2s), we expect that the-
pseudoparticle phase shift will be a sum (cg) two-pseudoparticle phase shifts and the
energy is given by
P

Epany =Y {0+ 07" +eE +67) (48)

n=1
where

) P 14+ &8 +€(0 + Ql)ga}
N — (—e, Q)N-2P+2 — =1..
fa = (=6&0) l_[{ 1468 +€(Q+ 0 D5 ’

b#a (49)
(5152 T sp)N = (—¢ Q)p(N—2p+2)'
This is not all; in a sector we may havep pseudoparticle and, 1, Ny_2, ..., N_i1
impurities of the typas — 1), (s — 2), ..., (—s + 1), respectively, such that
Nf—l + 2N€—2 +---+ (2S - 1)N—H—l =r - 2Sp (50)

We call a statea, n) flanked by at least two statéls, n &+ 1) such that:+b # 0 an impurity.
Since’H is a sum of projectors on spin zero, these states are annihilated by particular,

the do not move under the action Bf, which is the reason for their name. Nevertheless,

a pseudoparticle can propagate past the isolated impurity, but in so doing causes a shift
in its position by two lattice sites. Thus, for a sectowith / impurities with parameters

&1, ..., & andp pseudoparticles with parametéys, . . ., &4, the energy is given by (48),

and the Bethe equations do not depend on impurity type and are given by

TR 1488460+ 08
NE2£2. g2 = (g, Q)N-20H2 _ a s - 51
5658 b = (—e Q) ﬂl{ 1+Ea§b+€S(Q+Q_1)Eb} (51)
b#a

witha=1+211+2,...,14+p, p>1,and
EZ(Erpr- 4 p)V T = (—e, Q)P NI (52)
where& = &1&5--- &€ 41 &4 ).
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4. Conclusion

We have shown that these closed Temperley—Lieb quantum-invariant spin chains can be
solved by the coordinate Bethe ansatz. A consequence of the non-locallfgrimghat
boundary conditions arise which depend on the quantum group paragnétethe relation
Q0 + Q! =25 + 1], and on the numbep of pseudoparticles (which is equal to the spin
sectorr, whens = J).

An interesting extension of this work would be the application of the methods presented
here to solving new strongly correlated electronic systems associated with the Temperley—
Lieb algebras [20, 21]. This is under investigation at present.
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