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Abstract. We solve the spectrum of the closed Temperley–Lieb quantum spin chains using the
coordinate Bethe ansatz. These models are invariant under the quantum groupUq [sl(2)].

1. Introduction

Quantum groups, together with the Temperley–Lieb algebra, play a important role in the
study of integrable spin chains. It may be interesting to study particular Hamiltonians
associated with the Temperley–Lieb which are invariant to the quantum group. Taking into
account the usual toroidal boundary conditions, the Hamiltonians take the form

H =
N−1∑
n=1

Un,n+1+ UN1. (1)

whereUn,n+1 operates in a direct product of two (2s + 1)-dimensional complex spaces
V 2s+1 at positionsn and n + 1. They are not invariant with respect toUq [sl(2)] since
UN1 6= U1N breaks translational invariance, reflecting the non-cocommutativity of the co-
product. Indeed, we know from [1–3] that very special boundary terms must be considered
when we seek these quantum group invariant spin chains. In particular, one possibility to
obtain a quantum group invariant Hamiltonian is to consider open boundary conditions,
i.e. UN1 = 0. for the XXZ Hamiltonian with open boundary conditions one has to
apply the Bethe ansatz techniques introduced by Sklyanin [4] using Cherednik’s reflection
matrices [5, 6]. TheXXZ Heisenberg model [7],splq(2, 1) invariant supersymmetrict–J
model [8, 9],Uq [sl(n)] invariant generalization of theXXZ chain [10] andSUq(n|m) spin
chains [3, 11] have been solved for open boundary conditions by this method.

Recently, by means of a generalized algebraic nested Bethe ansatz, Karowski and
Zapletal [12] presented a class of quantum group invariantn-state vertex models with
periodic boundary conditions. Also an extension of this method to the case of graded
vertex models was analyzed in [13], where asplq(2|1) invariant SUSYt–J model with
boundary conditions was presented.

In fact, this type of models were first discussed by Martin [14] from the representations
of the Hecke algebra. The study of closed quantum group invariant closed spin chains
in the framework of the coordinate Bethe ansatz was presented by Grosseet al for the
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SUq(2) case [15]. In this context it would be interesting to discuss other quantum group
invariant closed spin chains. Therefore, it is the purpose of this paper to present and
solve, via coordinate Bethe ansatz [16] a closed spin-s Hamiltonian, which in terms of the
Temperley–Lieb operators can be written as

H =
N−1∑
n=1

Un + U0 (2)

where

U0 = GUN−1G
−1 G = (Q− U1)(Q− U2) · · · (Q− UN−1) (3)

satisfying [H,G] = 0 and additionally invariance with respect to the quantum algebra. The
operatorG shifts theUn by one unitGUnG−1 = Un+1 and mapsU0 ontoU1, which manifest
the translational invariance ofH.

2. The Temperley–Lieb Hamiltonians

In the basis whereSzn is diagonal with eigenvectors|s, n〉, |s − 1, n〉, . . . , | − s, n〉 and
eigenvaluess, s − 1, . . . ,−s, the Hamiltonian densities acting on two neighbouring sites
are given by

〈k, l| U |i, j〉 = ε(i)ε(k)q(i+k)δi+j,0 δk+l,0 i, j, k, l = s, s − 1, . . . ,−s + 1,−s (4)

where ε(i) = (−1)i for s integer andε(i) = (−1)i+1/2 for s semi-integer. ThusUn
denotes the projection on states whose restriction to sitesn andn + 1 has total spin zero.
These Hamiltonians were derived Batchelor and Kuniba [17] from representations of the
Temperley–Lieb algebras associated with the quantum groupUq [sl(2)]. The cases = 1

2
was investigated in [15].

In fact,Un obeys the Temperley–Lieb algebra [18]

U2
n = (Q+Q−1)Un Q+Q−1 = [2s + 1]q

UnUn+1Un = Un [Un,Ul ] = 0 for |n− l| > 2
(5)

and commutes with the quantum groupUq [sl(2)]. The q-number notation is [x]q =
(qx − q−x)/(q − q−1). This algebra appears in a large class of solvable models and is
known to essentially govern their physical properties:H is an element of a set of infinity
quantities conserved which are involutive provided thatUn satisfies the defining relations (5).

Having now built common ground for all closed Hamiltonian densities, whose salient
feature is that they are spin-zero projectors, we may implement the steps of [19], where the
spectrum of theA–D Temperley–Lieb Hamiltonians with either periodic or free boundary
conditions were solved, via a generalization of the coordinate Bethe ansatz.

3. The coordinate Bethe ansatz

Since these Hamiltonians commute with the total spinSzT =
∑N

n=1 S
z
n, the eigenvalues of

the operatorr = sN − SzT can be used to collect the eigenstates ofH in sectors,9r . Due
to thisU(1) invariance, there always exists a reference state90 satisfyingH90 = E090,
with E0 = 0. We take90 to be90 =

∏
n |s, n〉. This is the only eigenstate in the sector

r = 0. All other energies will be measured relative to this state.
We will now start to diagonalizeH in every sector. Nothing interesting happens in

sectors withr < 2s. SinceH is a sum of projectors on spin zero, these states are annihilated
by H.
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The first non-trivial sectorr = 2s, the correspondent eigenspace is spanned by the states

|n(−j, j)〉 =
∣∣∣∣s s · · · s −j

n

j s · · · s
〉

wheren = 1, 2, . . . , N−1 andj = −s,−s+1, . . . , s. We seek eigenstates ofH which are
linear combinations of these vectors. It is very convenient to consider the linear combination

|�(n)〉 =
s∑

j=−s
(−1)s+j qs−j |n(−j, j)〉 . (6)

which is a highest-weight state,S+ |�(n)〉 = 0, and eigenstate ofUn:

Un |�(n)〉 = (Q+Q−1) |�(n)〉 Un±1 |�(n)〉 = εs |�(n± 1)〉
Un |�(n± 1)〉 = εs |�(n)〉 Un |�(m)〉 = 0 for n 6= {m± 1, m}

(7)

where εs = −1 for semi-integers and εs = 1 for integer s. In this basis, all spin-s
HamiltoniansH can be treated in a similar way and it affords a considerable simplification
in the diagonalization ofH, when one compares with the computations in the usual spin
basis [19].

3.1. One-pseudoparticle eigenstates

Let us consider one free pseudoparticle as a highest-weight state which lies in the sector
r = 2s:

92s =
N−1∑
n=1

A(n) |�(n)〉 . (8)

Using the eigenvalue equationH92s = E2s92s , one can derive a complete set of equations
for the wavefunctionsA(n).

The action of the operatorG = (Q − U1) · · · (Q − UN−1) on the states|�(n)〉 can be
computed using equation (7). It is simple in the bulk and at the left boundary:

G |�(n)〉 = −εsQN−2 |�(n+ 1)〉 16 n 6 N − 2 (9)

but manifests its non-locality at the right boundary:

G |�(N − 1)〉 = εsQN−2
N−1∑
n=1

(−εsQ)−n |�(N − n)〉 . (10)

Similarly, acting with the operatorG−1 = (Q−1− UN−1) · · · (Q−1− U1), we obtain

G−1 |�(n)〉 = −εsQ−N+2 |�(n− 1)〉 26 n 6 N − 1 (11)

G−1 |�(1)〉 = εsQ−N+2
N−1∑
n=1

(−εsQ)n |�(n)〉 (12)

for the bulk including the right boundary and for the left boundary, respectively.
From these results one can see that the action ofU0 = GUN−1G

−1 vanishes in the bulk:

U0 |�(n)〉 = 0 26 n 6 N − 2 (13)

and is non-local at the boundaries:

U0 |�(1)〉 = −εs
N−1∑
n=1

(−εsQ)n |�(n)〉 U0 |�(N − 1)〉 = (−εsQ)−N U0 |�(1)〉 .

(14)
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Next, the action of the operatorU =∑N−1
k=1 Uk on the states|�(n)〉 gives the following

equations:

U |�(1)〉 = (Q+Q−1) |�(1)〉 + εs |�(2)〉
U |�(n)〉 = (Q+Q−1) |�(n)〉 + εs |�(n− 1)〉 + εs |�(n+ 1)〉 for 26 n 6 N − 2

U |�(N − 1)〉 = (Q+Q−1) |�(N − 1)〉 + εs |�(N − 2)〉 .
(15)

Before we substitute these results in the eigenvalue equation, we will define two new
states

εs |�(0)〉 = U0 |�(1)〉 εs |�(N)〉 = U0 |�(N − 1)〉 (16)

to include the casesn = 0 andn = N in the definition of92s , equation (8). Finally, the
action ofH = U + U0 on the states|�(n)〉 is

H |�(0)〉 = (Q+Q−1) |�(0)〉 + (−εsQ)Nεs |�(N − 1)〉 + εs |�(1)〉
H |�(n)〉 = (Q+Q−1) |�(n)〉 + εs |�(n− 1)〉 + εs |�(n+ 1)〉

for 16 n 6 N − 2

H |�(N − 1)〉 = (Q+Q−1) |�(N − 1)〉 + εs |�(N − 2)〉 + (−εsQ)−Nεs |�(0)〉
H |�(N)〉 = (Q+Q−1) |�(N)〉 + εs |�(N − 1)〉 + (−εsQ)−Nεs |�(1)〉 .

(17)

Substituting these results in the eigenvalue equationH92s = E2s 92s and using the boundary
conditions

(−εsQ)NA(x) = A(N + x) (18)

we obtain a complete set of eigenvalue equations for the wavefunctions:

E2s A(n) = (Q+Q−1)A(n)+ εsA(n− 1)+ εsA(n+ 1) for 16 n 6 N − 1. (19)

The plane-wave parametrizationA(n) = ξn solves these eigenvalue equations and the
boundary conditions (18), provided that

E2s = Q+Q−1+ εs(ξ + ξ−1) and ξN = (−εsQ)N (20)

whereξ = eiθ , θ being the momentum.

3.2. Two-pseudoparticle eigenstates

Let us now consider the sectorr = 2(2s), where we have two interacting
pseudoparticles. We seek the corresponding eigenfunction as products of single
pseudoparticles eigenfunctions, i.e.

94s =
∑

x1+1<x2

A(x1, x2) |�(x1, x2)〉 (21)

where

|�(x1, x2)〉 =
s∑

i=−s

s∑
j=−s

(−1)i+j q2s−i−j |x1(−i, i), x2(−j, j)〉 . (22)

To solve the eigenvalue equationH94s = E4s94s , we recall (7) to obtain the action of
U andU0 on the states|�(x1, x2)〉. We have to consider four cases.
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(i) When the two pseudoparticles are separated in the bulk, the action ofU is

U |�(x1, x2)〉 = 2(Q+Q−1) |�(x1, x2)〉 + εs |�(x1− 1, x2)〉 + εs |�(x1+ 1, x2)〉
+ εs |�(x1, x2− 1)〉 + εs |�(x1, x2+ 1)〉 (23)

i.e. for x1 > 2 andx1+ 36 x2 6 N − 2.
(ii) When the two pseudoparticles are separated but one of them or both are at the boundaries

U |�(1, x2)〉 = 2(Q+Q−1) |�(1, x2)〉 + εs |�(2, x2)〉 + εs |�(1, x2− 1)〉
+εs |�(1, x2+ 1)〉 (24)

U |�(x1, N − 1)〉 = 2(Q+Q−1) |�(x1, N − 1)〉 + εs |�(x1− 1, N − 1)〉
+εs |�(x1+ 1, N − 1)〉 + εs |�(x1, N − 2)〉 (25)

U |�(1, N − 1)〉 = 2(Q+Q−1) |�(1, N − 1)〉 + εs |�(2, N − 1)〉 + εs |�(1, N − 2)〉 (26)

where 26 x1 6 N − 4 and 46 x2 6 N − 2.
(iii) When the two pseudoparticles are neighbours in the bulk

U |�(x, x + 2)〉 = 2(Q+Q−1) |�(x, x + 2)〉 + εs |�(x − 1, x + 2)〉 + εs |�(x, x + 3)〉
+Ux+1 |�(x, x + 2)〉 (27)

for 26 x 6 N − 4.
(iv) When the two pseudoparticles are neighbours and at the boundaries

U |�(1, 3)〉 = 2(Q+Q−1) |�(1, 3)〉 + εs |�(1, 4)〉 + U2 |�(1, 3)〉 (28)

U |�(N − 3, N − 1)〉 = 2(Q+Q−1) |�(N − 3, N − 1)〉 + εs |�(N − 4, N − 1)〉
+UN−2 |�(N − 3, N − 1)〉 . (29)

Moreover, the action ofU0 does not depend on the pseudoparticles are neither separated
nor neighbours. It vanishes in the bulk

U0 |�(x1, x2)〉 = 0 for x1 6= 1 and x2 6= N − 1 (30)

and is non-zero at the boundaries:

U0 |�(1, x2)〉 = −εs
x2−2∑
k=1

(−εsQ)k |�(k, x2)〉 − (−εsQ)x2−1Ux2 |�(x2− 1, x2+ 1)〉

− εs
N−1∑
k=x2+2

(−εsQ)k−2 |�(x2, k)〉 (31)

U0 |�(x1, N − 1)〉 = (−εsQ)−N+2 U0 |�(1, x2)〉 (32)

where 26 x1 6 N − 3 and 36 x2 6 N − 2.
Before we substitute these expressions in the eigenvalue equation, we define new states

in order to have consistency between bulk and boundaries terms

U0 |�(1, x2)〉 = εs |�(0, x2)〉 , U0 |�(x1, N − 1)〉 = εs |�(x1, N)〉
U0 |�(1, N − 1)〉 = εs |�(0, N − 1)〉 + εs |�(1, N)〉
Ux+1 |�(x, x + 2)〉 = εs |�(x, x + 1)〉 + εs |�(x + 1, x + 2)〉 .

(33)
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Acting with H on these new states, we obtain

H |�(0, x2)〉 = 2(Q+Q−1) |�(0, x2)〉 + εs |�(0, x2− 1)〉 + εs |�(0, x2+ 1)〉
+ εs |�(1, x2)〉 + (−εsQ)N−2εs |�(x2, N − 1)〉 (34)

H |�(x1, N)〉 = 2(Q+Q−1) |�(x1, N)〉 + εs |�(x1− 1, N)〉 + εs |�(x1+ 1, N)〉
+ εs |�(x1, N − 1)〉 + (−εsQ)−N+2εs |�(1, x1)〉 (35)

H |�(x, x + 1)〉 = (Q+Q−1) |�(x, x + 1)〉 + εs |�(x − 1, x + 1)〉 + εs |�(x, x + 2)〉 .
(36)

Substituting these results in the eigenvalue equation, we obtain the following equations for
wavefunctions corresponding to the separated pseudoparticles:

E4sA(x1, x2) = 2(Q+Q−1)A(x1, x2)+ εsA(x1− 1, x2)+ εsA(x1+ 1, x2)

+ εsA(x1, x2− 1)+ εsA(x1, x2+ 1) (37)

i.e. for x1 > 1 andx1+ 36 x2 6 N − 1. The boundary conditions now read

A(x2, N + x1) = (−εsQ)N−2A(x1, x2). (38)

The parametrization for the wavefunctions

A(x1, x2) = A12ξ
x1
1 ξ

x2
2 + A21ξ

x2
1 ξ

x1
2 (39)

solves equation (37) provided that

E4s = 2(Q+Q−1)+ εs(ξ1+ ξ−1
1 + ξ2+ ξ−1

2 ) (40)

and the boundary conditions (38) provided that

ξN2 = (−εsQ)N−2A21

A12
, ξN1 = (−εsQ)N−2A12

A21
⇒ ξN = (−εsQ)2(N−2) (41)

whereξ = ξ1ξ2 = ei(θ1+θ2), θ1+ θ2 being the total momenta.
Now we include the new states (33) in the definition of94s in order to extend (21) to

94s =
∑
x1<x2

A(x1, x2) |�(x1, x2)〉 . (42)

Here we have used the same notation for separate and neighbouring states.
Substituting equations (27) and (36) in the eigenvalue equation, we obtain

E4sA(x, x + 1) = (Q+Q−1)A(x, x + 1)+ εsA(x − 1, x + 1)+ εsA(x, x + 2) (43)

which gives us the phase shift produced by the interchange of the two interacting
pseudoparticles

A21

A12
= −1+ ξ + εs(Q+Q−1)ξ2

1+ ξ + εs(Q+Q−1)ξ1
. (44)

We thus arrive at the Bethe ansatz equations which fix the values ofξ1 andξ2:

ξN2 = (−εsQ)N−2

{
−1+ ξ + εs(Q+Q−1)ξ2

1+ ξ + εs(Q+Q−1)ξ1

}
ξN1 ξ

N
2 = (−εsQ)2(N−2)

(45)
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3.3. General eigenstates

The generalization to anyr multiple of 2s is in principle straightforward. Since the Yang–
Baxter equations are satisfied, there is only two-pseudoparticle scattering (if we useS-matrix
language). Therefore the neighbour equations, where more the two pseudoparticles become
neighbours, are not expected to give any new restrictions. For instance, in the sector
r = 3(2s) we have three interacting pseudoparticles with parametersξ1, ξ2 and ξ3. The
corresponding wavefunctions

A(x1, x2, x3) = A123ξ
x1
1 ξ

x2
2 ξ

x3
3 + A132ξ

x1
1 ξ

x3
2 ξ

x2
3 + A213ξ

x2
1 ξ

x1
2 ξ

x3
3 + A231ξ

x2
1 ξ

x3
2 ξ

x1
3

+A312ξ
x3
1 ξ

x1
2 ξ

x2
3 + A321ξ

x3
1 ξ

x2
2 ξ

x1
3 (46)

satisfy the boundary conditions

A(x2, x3, N + x1) = (−εsQ)N−4A(x1, x2, x3)

which imply that

ξNi = (−εsQ)N−4Aijk

Ajki
= (−εsQ)N−4Aikj

Akji
i 6= j 6= k = 1, 2, 3. (47)

These relations show us that the interchange of two pseudoparticles is independent of
the position of the third particle. Thus in the sectorr = p(2s), we expect that thep-
pseudoparticle phase shift will be a sum of

(
p

2

)
two-pseudoparticle phase shifts and the

energy is given by

Ep(2s) =
p∑
n=1

{
Q+Q−1+ εs(ξn + ξ−1

n )
}

(48)

where

ξNa = (−εsQ)N−2p+2
p∏
b 6=a

{
−1+ ξaξb + εs(Q+Q−1)ξa

1+ ξaξb + εs(Q+Q−1)ξb

}
a = 1, . . . , p

(
ξ1ξ2 · · · ξp

)N = (−εsQ)p(N−2p+2).

(49)

This is not all; in a sectorr we may havep pseudoparticle andNs−1, Ns−2, . . . , N−s+1

impurities of the type(s − 1), (s − 2), . . . , (−s + 1), respectively, such that

Ns−1+ 2Ns−2+ · · · + (2s − 1)N−s+1 = r − 2sp. (50)

We call a state|a, n〉 flanked by at least two states|b, n± 1〉 such thata+b 6= 0 an impurity.
SinceH is a sum of projectors on spin zero, these states are annihilated byH. In particular,
the do not move under the action ofH, which is the reason for their name. Nevertheless,
a pseudoparticle can propagate past the isolated impurity, but in so doing causes a shift
in its position by two lattice sites. Thus, for a sectorr with l impurities with parameters
ξ1, . . . , ξl andp pseudoparticles with parametersξl+1, . . . , ξl+p the energy is given by (48),
and the Bethe equations do not depend on impurity type and are given by

ξNa ξ
2
1ξ

2
2 · · · ξ2

l = (−εsQ)N−2p+2
l+p∏
b=l+1
b 6=a

{
−1+ ξaξb + εs(Q+Q−1)ξa

1+ ξaξb + εs(Q+Q−1)ξb

}
(51)

with a = l + 1, l + 2, . . . , l + p, p > 1, and

ξ2p(ξl+1 · · · ξl+p)N−2p = (−εsQ)p(N−2p+2) (52)

whereξ = ξ1ξ2 · · · ξlξl+1 · · · ξl+p.
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4. Conclusion

We have shown that these closed Temperley–Lieb quantum-invariant spin chains can be
solved by the coordinate Bethe ansatz. A consequence of the non-local termsU0 is that
boundary conditions arise which depend on the quantum group parameterq via the relation
Q+Q−1 = [2s + 1]q and on the numberp of pseudoparticles (which is equal to the spin
sectorr, whens = 1

2).
An interesting extension of this work would be the application of the methods presented

here to solving new strongly correlated electronic systems associated with the Temperley–
Lieb algebras [20, 21]. This is under investigation at present.
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